An Automated Teeth Lesion Diagnosis based on Deep Learning Techniques
A pipeline based on context-aware light-weight transformers with the goal of improving image quality without sacrificing the naturalness of the image, as well as reducing the inference time and size of the model. In this study, we trained a deep network-based transformer model on two standard datasets, i.e., Large-Scale Underwater Image (LSUI) and Underwater Image Enhancement Benchmark Dataset (UIEB), so that the network becomes more generalized, which subsequently improved the performance. Our real-time underwater image enhancement system shows superior results on edge devices. Also, we provide a comparison with other transformer-based methods.